Enhancement of glucose transport by vascular endothelial growth factor in retinal endothelial cells.
نویسندگان
چکیده
PURPOSE To investigate effects of vascular endothelial growth factor (VEGF) on glucose transport and GLUT1 glucose transporter expression in primary bovine retinal endothelial cell (BREC) cultures. METHODS Glucose transport in control and VEGF-treated BREC cultures was determined by measurement of [14C]-3-O-methylglucose (3MG) uptake. GLUT1 protein and mRNA was determined by Western and Northern blot analyses, respectively. Protein kinase C (PKC) activity was measured in control and VEGF-treated cultures, and glucose transport was determined with and without prior PKC depletion and PKC inhibition. RESULTS Dose-dependent increases in 3MG uptake were seen in the VEGF-treated cultures, with an increase of 69% after a 24-hour exposure to 50 ng/ml VEGF (P < 0.001). Total cellular GLUT1 mRNA or protein, however, was unchanged. Western blot analysis of plasma membrane fractions revealed a 75% increase in plasma membrane GLUT1 in VEGF-treated cultures (P = 0.02), suggesting that the VEGF-stimulated increase in glucose transport was due to a translocation of GLUT1 to the cell membrane. VEGF stimulated a 90% increase in PKC activity in membrane fractions from cultures treated with VEGF, and VEGF-stimulated enhancement of glucose transport was abolished by cellular PKC depletion and by general and PKC beta inhibition. CONCLUSIONS The present study demonstrates VEGF-mediated enhancement of retinal endothelial cell glucose transport and suggests that this increase is due to PKC beta-mediated translocation of cytosolic GLUT1 to the plasma membrane surface. Upregulation of retinal endothelial cell glucose transport by various factors associated with the development of retinopathy may be responsible for the metabolic derangements observed in the diabetic inner blood-retinal barrier in vivo.
منابع مشابه
Mesenchymal Stem Cells Differentiate to Endothelial Cells Using Recombinant Vascular Endothelial Growth Factor –A
Background: Vascular endothelial growth factor-A (VEGF-A), an endothelial cell-specific mitogen produced by various cell types, plays important roles in cell differentiation and proliferation. In this study we investigated the effect of recombinant VEGF-A on differentiation of mesenchymal stem cells (MSCs) to endothelial cells (ECs). Methods: VEGF-A was expressed in E. coli BL21 (DE3) and BL21...
متن کاملEffect of different concentrations of leukemia inhibitory factor on gene expression of vascular endothelial growth factor-A in trophoblast Tumor Cell Line
Background: Several studies have shown that leukemia inhibitory factor (LIF) is one of the most important cytokinesparticipating in the process of embryo implantation and pregnancy, while, the role of this factor on vascular endothelialfactor-A (VEGF-A), as one of the most important angiogenic factor, has not been fully investigated yet. The aimof this study was to evaluate th...
متن کاملPatterns of Vascular Endothelial Growth Factor Expression in Hematopoietic Malignant Cells
Background and Objective: Vascular endothelial growth factor (VEGF) is a cytokine which is overexpressed in many malignant cancers including leukemia. VEGF plays an important role in tumor invasion and metastasis. Determination of the pattern of VEGF expression in human leukemic cell lines could be useful not only in screening of new antileukemic agents but also to study the mechanism of their ...
متن کاملVascular Endothelial Growth Factor from Embryonic Status to Cardiovascular Pathology
Vascular endothelial growth factor (VEGF) is a multifunctional cytokine with distinct functions in angiogenesis, lymphangiogenesis, vascular permeability, and hematopoiesis. VEGF is a highly conserved, disulfide-bonded dimeric glycoprotein of 34 to 45 kDa produced by several cell types including fibroblasts, neutrophils, endothelial cells, and peripheral blood mononuclear cells, particularly T ...
متن کاملMiR-103 regulates the angiogenesis of ischemic stroke rats by targeting vascular endothelial growth factor (VEGF)
Objective(s): To investigate the effect of miR-103 on the angiogenesis of ischemic stroke rats via targeting vascular endothelial growth factor (VEGF) at the molecular level. Materials and Methods: Rat models had received the middle cerebral artery occlusion (MCAO) or sham operation before grouping, and cell models of oxygen-glucose deprivation (OGD) were performed. FITC-dextran, matrigel, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 41 7 شماره
صفحات -
تاریخ انتشار 2000